使用信息熵寻找最优划分

鸢尾花二维数据:

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets data = datasets.load_iris() X = data.data[:, 2:] y = data.target from sklearn.tree import DecisionTreeClassifier dtc_clf = DecisionTreeClassifier(max_depth = 2, criterion='entropy') dtc_clf.fit(X, y) def plot_decision_boundary(model, axis): x0, x1 = np.meshgrid( np.linspace(axis[0], axis[1], int((axis[1] - axis[0])*100)).reshape(-1, 1), np.linspace(axis[2], axis[3], int((axis[3] - axis[2])*100)).reshape(-1, 1) ) X_new = np.c_[x0.ravel(), x1.ravel()] y_predict = model.predict(X_new) zz = y_predict.reshape(x0.shape) from matplotlib.colors import ListedColormap custom_cmap = ListedColormap(['#EF9A9A', '#EFF59D', '#90CAF9']) plt.contourf(x0, x1, zz, cmap=custom_cmap) plot_decision_boundary(dtc_clf, [0.5, 7.5, 0, 3]) plt.scatter(X[y==0, 0], X[y==0, 1]) plt.scatter(X[y==1, 0], X[y==1, 1]) plt.scatter(X[y==2, 0], X[y==2, 1]) plt.title("Decision Tree")

和老师的结果有出入,第一个决策点不在x轴上,而在y轴上?

自己编写通过entropy来分类的决策树代码

from collections import Counter def split(X, y, d, value): index_a = X[:, d] <= value index_b = X[:, d] > value return X[index_a], X[index_b], y[index_a], y[index_b] def entropy(y): counter = Counter(y) res = 0.0 for v in counter.values(): p = v/len(y) res += -p * np.log(p) return res def try_split(X, y): best_entropy = float('inf') best_d, best_v = -1, -1 for d in range(X.shape[1]): sorted_index = np.argsort(X[:, d]) for i in range(1, len(X)): if X[sorted_index[i-1], d] != X[sorted_index[i], d]: v = (X[sorted_index[i-1], d]+X[sorted_index[i],d])/2 X_l, X_r, y_l, y_r = split(X, y, d, v) e = entropy(y_l) + entropy(y_r) if e < best_entropy: best_entropy, best_d, best_v = e, d, v return best_entropy, best_d, best_v

求第一个决策点:

best_entropy, best_d, best_v = try_split(X, y) print("best_entropy = ", best_entropy) print("best_d = ", best_d) print("best_v = ", best_v)

结果:

best_entropy, best_d, best_v = try_split(X, y) print("best_entropy = ", best_entropy) print("best_d = ", best_d) print("best_v = ", best_v)

(0.6931471805599453, 0, 2.45)

求第二个决策点

X_l, X_r, y_l, y_r = split(X, y, 0, 2.45) best_entropy2, best_d2, best_v2 = try_split(X_r, y_r) print("best_entropy = ", best_entropy2) print("best_d = ", best_d2) print("best_v = ", best_v2) X2_l, X2_r, y2_l, y2_r = split(X_r, y_r, 1, 1.75) entropy(y2_l) entropy(y2_r)
best_entropy = 0.4132278899361904 best_d = 1 best_v = 1.75 0.30849545083110386 0.10473243910508653